Cryotherapy in inflammatory rheumatic diseases: A systematic review

Article in Expert Review of Clinical Immunology · December 2013
DOI: 10.1586/1744666X.2014.870036 · Source: PubMed

7 authors, including:

Nicolas Tordi
University of Franche-Comté
93 PUBLICATIONS 902 CITATIONS

Laurent Mourot
University Bourgogne Franche-Comté
98 PUBLICATIONS 993 CITATIONS

Benoit DUGUE
Université de Poitiers
100 PUBLICATIONS 1,585 CITATIONS

Clément Prati
Centre Hospitalier Régional et Universitaire…
217 PUBLICATIONS 857 CITATIONS

Some of the authors of this publication are also working on these related projects:

Currently studying vascular responses to eccentric aerobic training View project

How to improve pos-exercise recovery with non invasive respiratory manoeuvres View project

All content following this page was uploaded by Laurent Mourot on 21 December 2013.

The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately.
Dear Author,

Please check these proofs carefully. It is the responsibility of the corresponding author to check against the original manuscript and approve or amend these proofs. A second proof is not normally provided. Informa Healthcare cannot be held responsible for uncorrected errors, even if introduced during the composition process. The journal reserves the right to charge for excessive author alterations, or for changes requested after the proofing stage has concluded.

A version of your manuscript showing the language edits as tracked changes is appended to the typeset proofs. This document is provided for reference purposes only. Please mark all your corrections to the typeset pages at the front of the PDF. Corrections marked to the tracked changes section will not be incorporated in the published document.

The following queries have arisen during the editing of your manuscript and are marked in the margins of the proofs. Unless advised otherwise, submit all corrections using the CATS online correction form. Once you have added all your corrections, please ensure you press the “Submit All Corrections” button.

<p>| AQ1 | Please review the table of contributors below and confirm that the first and last names are structured correctly and that the authors are listed in the correct order of contribution. |</p>
<table>
<thead>
<tr>
<th>Contrib. No.</th>
<th>Given name(s)</th>
<th>Surname</th>
<th>Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Xavier</td>
<td>Guillot</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Nicolas</td>
<td>Tordi</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Laurent</td>
<td>Mourot</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Céline</td>
<td>Demougeot</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Benoît</td>
<td>Dugué</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Clément</td>
<td>Prati</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Daniel</td>
<td>Wendling</td>
<td></td>
</tr>
</tbody>
</table>

| AQ2 | References have been renumbered to meet the requirement of housestyle and also citations need to be in numerical order. Please check that each citation number points to the correct reference. |

AQ3	Please provide citation for [83,84].
AQ4	Please provide the expansion for the abbreviations ESR and CRP
AQ5	Please provide the significance of ‘?’ in Table 3
AQ6	Please provide the in-text citation for Table 4.
Cryotherapy in inflammatory rheumatic diseases: a systematic review

Inflammatory joint diseases, such as rheumatoid arthritis (RA), represent a major public health concern, with both synovial inflammation causing joint destruction, pain and disability [1] and systemic inflammation thought to increase cardiovascular risk and mortality [2,3]. Recently, progress in immunology provided new therapeutic targets and new drugs such as biologic agents allowing to achieve clinical remission and prevent joint destruction [4]. These treatments, however, remain expensive, with rare but potentially life-threatening side effects such as infections [6]. Long-term nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids also have a well-known toxicity [7]. So the development of adjunct therapies in order to spare biologic and corticosteroid doses is a key focus in these diseases.

Cryotherapy is used empirically in a wide range of rheumatic diseases as a symptomatic treatment, with well-known analgesic, anti-inflammatory, muscle relaxant and antiphlogistic effects [8–10]. It can be used not only in inflammatory joint diseases (such as crystal-induced arthritis, spondyloarthritides and RA [10]) but also in such painful rheumatic condition as osteoarthritides [8,9], fibromyalgia [11], shoulder capsulitis [12] and muscle damage [13]. Whole-body cryotherapy (WBC) also showed effects on bone biomarkers [14]. This adjunct treatment is cheap (at least for local cryotherapy (LC)) and generally well tolerated [15,16]. Technical modalities (local/general application, duration, number of sessions [17], and physical form) are very diverse and lack standardization [18]. This widespread use contrasts with a poor level of evidence [18]. Cryotherapy has been shown to decrease intra-articular temperature (°C) in human knees to 30°C [19,20]. This intra-articular temperature is in the same range as therapeutic mild hypothermia used in several other medical fields. Mild hypothermia (28–34°C) has shown anti-inflammatory effects in healthy subjects [21,22] and in very diverse pathologies such as cerebral ischemia in humans [23] and murine models [23,24], traumatic tissue injury in murine models [25,26] and humans [27], hemorrhagic shock in rats [28], cardiac arrest in humans [29], coma in pigs [30].
coronary artery or cardiopulmonary bypass in humans [31], aortic ischemia/reperfusion in mice [32], mechanical ventilation in rats [33,34], postexercise hyperthermia in humans [35], age-related macular degeneration in culture experiments using a retinal cell line [36] and pancreatitis in rats [37]. These studies showed potential effects on important molecular/cellular mechanisms involved in synovial inflammation and joint destruction such as proinflammatory cytokines [21,25,38], VEGF [36], enzymatic pathways (metalloproteinases [39,40], collagenase [41], adhesion molecules (ICAM-1) and white blood cell infiltration formation in rats [42] and humans [43], oxidative stress in rats [24] and humans [44], norepinephrine in humans [24,45,46].

This suggests potential therapeutic effects in inflammatory rheumatic diseases such as RA, as some of these molecular pathways are known to be related to pain, disease activity scores including 28-joint disease activity score (DAS28), biological inflammation and radiologic joint damage.

The aim of this article is to review data and evidence concerning cryotherapy’s effects in inflammatory rheumatic diseases.

First, we performed a systematic review of the literature about cryotherapy’s therapeutic effects in rheumatic inflammatory joint diseases. The primary endpoints were pain assessed by visual analogic scale (VAS) and DAS28. The secondary endpoints were tolerance and molecular anti-inflammatory effects of cryotherapy in these diseases.

Cryotherapy effects on pain & disease activity in rheumatoid arthritis: systematic review

Methods

We followed the PRISMA statement checklist for meta-analysis and systematic review quality criteria [47].

Searching

We used PubMed, EMBASE, LILACS and Cochrane library databases. Keywords ‘cryotherapy,’ ‘cryotherapy arthritis,’ ‘cryotherapy inflammation,’ ‘cold,’ ‘cold arthritis,’ ‘cryostimulation’ and ‘WBC’ were used alone and in combination. We considered articles with available abstracts in English, German, Spanish, French language and in referenced journals from their inception to March 2013.

We also manually screened references cited in the selected articles, considered abstracts from rheumatology congresses (ACR, EULAR since 2001).

As concerns unpublished data, we considered the International Standard Randomised Controlled Trial Number Register [101], The National Institute of Health [102] and the WHO [103]. The screening was performed by two independent reviewers with discussion when needed in order to reach consensus.

Eligibility & study selection

Selection criteria for cryotherapy therapeutic effect evaluation were studies including inflammatory rheumatic disease patients (i.e., RA, microcrystals, peripheral spondyloarthritis) treated with LC or WBC, with endpoints evaluating pain and joint disease activity (pain VAS, ESR, CRP, DAS28 and Doppler activity). Articles about postoperative joint cryotherapy and infectious diseases were excluded. We selected original articles, abstracts, reviews and meta-analyses. Duplicates were removed.

Quality assessment

For cryotherapy therapeutic effects, we analyzed technical cryotherapy modalities in detail (physical form and device, duration, skin or joint temperature).

The methodology was also evaluated: study population, randomization, blinding, control groups (other therapeutic modalities such as pharmacological treatments, physical therapy, different cryotherapy techniques or placebo groups), withdrawal and dropout reporting, as well as potential confounders (corticosteroids, NSAIDs, biologics, physical exercise, kinesitherapy, BMI, considered joint) when assessed in the studies. Data extraction was performed by two independent reviewers.

Therefore, we assessed study quality based on specific validated scores depending on the study design. A JADAD 5-point scale was used for randomized controlled trials [48]. For nonrandomized studies, we used the Newcastle–Ottawa Scale (NOS) system (0–9) [104]. Furthermore, a JADAD 11-point scale [48] was applied to all the selected studies whatever their design in order to compare them globally and to provide a general qualitative overview. Studies that scored six or higher using JADAD 11-point scale (3/5 with JADAD-5 and 5/9 with NOS) were considered to be of higher quality. This quality assessment was also performed by two independent reviewers.

Quantitative data synthesis

Most outcomes were continuous in nature (pain VAS, DAS28). When pooling data from different trials was possible, the principal measures of effect were means ± SD (weighted mean differences before/after cryotherapy or relative to control groups when possible). Heterogeneity was assessed graphically with 95% confidence intervals and statistically tested using Fisher’s variance comparison tests. Heterogeneity threshold was calculated for each primary outcome (F = 2.73 or greater was significantly heterogeneous for pain VAS in patients treated with LC, F = 2.7 for pain VAS in WBC-treated patients, F = 2.73 for DAS28 in LC-treated patients and F = 3.12 in WBC-treated patients). We used a fixed effect model. Pooled means ± SD were compared before/after cryotherapy (within-group effect size; paired t tests; α risk 5%) and the mean differences before/after treatment were compared between cryotherapy-treated patients and control groups when available (between-group effect size; unpaired t tests; α = 5%; variance comparison using Fisher’s test).

Data were analyzed using Statview® (SAS Institute Inc. Version 5.0) device. There were no a priori sensitivity and subgroup analyses. We also considered unpublished data in order to minimize publication bias.

Results

Flowchart

The Flowchart is shown in Figure 1.
Screening results
PubMed search (in English with abstracts) displayed 11,344 citations for ‘cryotherapy’ keyword on 4 March 2013, ‘cryotherapy arthritis,’ ‘cryotherapy inflammation,’ ‘WBC,’ ‘cold,’ ‘cold arthritis,’ ‘cold inflammation,’ ‘cryostimulation’ showed 67, 346, 331, 108,707, 733, 4355 and 31 results, respectively.
EMBASE database displayed 23,228 citations for ‘cryotherapy’ keyword, 22,632 results for ‘cold,’ 1784 results for ‘cold arthritis,’ 445 results for ‘cryotherapy arthritis,’ 95 results for ‘WBC,’ 17,445 results for ‘cold inflammation,’ 3402 results for ‘cryotherapy inflammation’ and 32 results for ‘cryostimulation.’
The LILACS database displayed 230 results for ‘cryotherapy’ keyword, 1 for ‘cryotherapy arthritis,’ 7 for ‘cryotherapy inflammation,’ 52 for ‘WBC,’ 1479 results for ‘cold’ keyword, 6 for ‘cold arthritis,’ 19 for ‘cold inflammation’ and 34 results for ‘cryostimulation.’

In EULAR congress abstracts, we found 17 and 132 abstracts related to ‘cryotherapy’ and ‘cold,’ respectively, since 2001 on EULAR website (ACR website: 21 abstracts related to ‘cold’ in 2006–2011, none related to ‘cryotherapy’).
The International Standard Randomised Controlled Trial Number Register website displayed 15 results for ‘cryotherapy’ keyword and 99 results for ‘cold’ keyword. The National Institute of Health website displayed 188 results for ‘cryotherapy’ keyword (4 for ‘cryotherapy arthritis,’ 5 for ‘WBC’) and 645 results for ‘cold’ keyword (16 for ‘cold arthritis’). The WHO website displayed 1830 results for ‘cryotherapy’ keyword (56 for ‘cryotherapy arthritis,’ 22 for ‘whole body cryotherapy’) and 3,020 results for ‘cold’ keyword (949 for ‘cold arthritis’).

Article selection process
First, articles were excluded on the basis of title and abstract: numerous records dealing with completely different scientific or medical fields such as dermatology, gynecology, urology, oncology, ophthalmology, infectious or lung diseases, chemistry, etc., very low temperature cell lysing-cryotherapy, local cryotherapy not applied to joints spine, etc. After duplicate removal, we found 511 records potentially dealing with cryotherapy in all types of joint diseases according to the titles and abstracts. After applying eligibility criteria, we screened 146 potentially relevant references in the field of therapeutic cryotherapy in inflammatory joint diseases.

Then, we excluded 124 articles for the following reasons: duplicates, articles related to postoperative cryotherapy, noninflammatory diseases, nonrheumatologic diseases, with inadequate outcomes or endpoints, lacking accuracy in cryotherapy technical description or numerical data reporting, with full text not available and insufficient data in the abstract.
A Cochrane meta-analysis including five RCT about cryotherapy in RA [49,53] was published in 2001 and updated in 2011 [18]. None of these articles were appropriate to be used in our meta-analysis, as summarized in Table 1. Two of the studies were performed in operated patients [49,50]. The outcomes [46,47] or outcome measures were inappropriate to our analysis [49,52,53]. Cold application was also probably insufficient in intensity [49,50], in duration [51] or periodicity [51–53]. Furthermore, hot packs used in three of the studies [50,52,53] could have proinflammatory properties [20] and therefore do not seem to be relevant treatments for control group.
The remaining articles (22 articles including 8 RCTs for therapeutic effects) were assessed for further evaluation on the basis of full-text article when available. Nine articles were further excluded [9,10,51–58].
The 13 remaining studies were potentially appropriate to be included in a meta-analysis. There were five RCTs, two nonrandomized controlled studies, three studies comparing several cryotherapy techniques in parallel treatment arms and three noncontrolled studies. Seven articles deals with local cryotherapy [859–64], four with WBC [65–68] and two with both (Figure 1) [69,70].

Characteristics of the studies selected for quantitative analysis (cryotherapy therapeutic effects)
Study characteristics and quality assessment results are summarized in Table 2.
<table>
<thead>
<tr>
<th>Pathology</th>
<th>Joint</th>
<th>Endpoints</th>
<th>Postoperative cryotherapy (yes/no)</th>
<th>JADAD score (/5)</th>
<th>Cryotherapy modality</th>
<th>Control group</th>
<th>Reason for Exclusion Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 RA (ARA criteria)</td>
<td>Knees</td>
<td>– Joint circumference</td>
<td>No</td>
<td>2/5</td>
<td>Crushed ice in damp towels (10 min daily for 10 days)</td>
<td>Controlateral joint (no cryotherapy)</td>
<td>– Endpoints</td>
</tr>
<tr>
<td>5 RA; 83 OA</td>
<td>Knees</td>
<td>– Pain (PCA use)</td>
<td>Yes</td>
<td>3/5</td>
<td>Thermal pad (50°F vs 60°F vs 70°F); duration? periodicity?</td>
<td>None</td>
<td>– Postoperative cryotherapy</td>
</tr>
<tr>
<td>14 chronic RA (definite or classic RA)</td>
<td>20 knees</td>
<td>– Pain (none = 0–5 = severe) assessed by two observers at the same time – Stiffness, range of movement, knee circumference, skin temperature, patient preference</td>
<td>No</td>
<td>1/5</td>
<td>Ice packs in damp towels (20 min, once a day for 10 days)</td>
<td>Hot packs (cross-over)</td>
<td>– Pain assessment</td>
</tr>
<tr>
<td>Patients hospitalized for surgical procedures to the hand</td>
<td>30 hands</td>
<td>– Edema evolution over preoperative volume</td>
<td>Yes</td>
<td>2/5 (R1B0W1)</td>
<td>Cold water immersion (10°C for 4 min; twice a day for 1 day)</td>
<td>Hot packs (n = 15)</td>
<td>– Postoperative Endsut</td>
</tr>
<tr>
<td>18 Recent RA (<5 years)</td>
<td>Shoulders</td>
<td>– Pain (Mc Gill questionnaire) – Range of movement</td>
<td>No</td>
<td>1/5 (R1B0W0)</td>
<td>Ice (20 min) + exercises program</td>
<td>Hot packs (n = 9)</td>
<td>– Pain assessment</td>
</tr>
</tbody>
</table>

This meta-analysis performed in 2001 and updated in 2011 mixed studies with cold or heat application. It showed no significant effect on pain (primary endpoint), joint swelling, medication intake, range of motion, grip strength or hand function. No harmful side effect was reported [18]. The five RCTs about cryotherapy had limitations: the studies showed a great heterogeneity as concerns cryotherapy methods, treated joints, outcomes, associated medications and physical exercise. The control groups were: hot packs in three studies and contralateral joint in one study. Heat application does not seem to be an appropriate control nor treatment group because it could increase joint inflammation and collagenase activity [20]. Cold exposure was probably insufficient in intensity and duration in some of the studies compared with more recent studies.

ARA: American Rheumatism Association; B: Blinding; n: number of patients; OA: Osteoarthritis; PCA: Patient-controlled Analgesia; R: Randomization; RA: Rheumatoid Arthritis; W: Withdrawals (JADAD score).

Data taken from the articles cited in this table.
Table 2. Therapeutic effects of cryotherapy: articles included in the meta-analysis (n = 6).

<table>
<thead>
<tr>
<th>Pathology/joints (n)</th>
<th>LC/WBC (n)</th>
<th>Cryotherapy modalities</th>
<th>Control group (n)</th>
<th>Relevant endpoints (for meta-analysis) and evaluation times</th>
<th>JADAD 5/ NOS</th>
<th>Bias/confounders</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA (60 patients)</td>
<td>- LC (n = 20) OR - WBC (-60˚C; n = 20) - WBC (-110˚C; n = 20)</td>
<td>- Cold packs or cold air on 5 joints (-30˚C; 10–30 or 1–5 min) OR - WBC (-60˚C OR -110˚C; duration?) → Three-times a day; 7 days (20 applications)</td>
<td>None</td>
<td>- Pain VAS - DAS28 - ESR - CRP → Before; Day 7 ‘after the last cryotherapy’ n = 20; 17; 17</td>
<td>R1B0W1 8/11</td>
<td>- Associated kinesitherapy - Corticosteroids (10/20; 14/20; 9/20); median dose 5 mg/day [25–15] - NSAIDs: 16/20; 17/20; 18/20 - DMARDs: 10/20; 9/20; 9/20 - ‘cytostatics’: 11/20; 14/20; 12/20 - No change in pharmalogical treatment. - BMI: 25.7 ± 4 vs 24.6 ± 3.6 vs 28.3 ± 5.9 - Biologics, physical exercise, skin/ room T˚C: NA</td>
<td>[70]</td>
</tr>
<tr>
<td>RA (ACR; n = 40 patients)</td>
<td>- LC (2 modalities)</td>
<td>- Cold air (-30˚C; 3 min; n = 20) OR - Liquid nitrogen vapors (-160˚C; 3 min; n = 20) → Twice a day (knees in the morning, 4 h break, then hands) for 10 days</td>
<td>None</td>
<td>- Pain VAS - DAS28 → Before and after 10 days of treatment</td>
<td>S3C102 6/11</td>
<td>- Associated kinesitherapy and physical exercise - Corticosteroids 28/40 - DMARDs 40/40 - Biologics: none - No change in pharmalogical treatment. - BMI: 28.4 ± 4.5 and 28.2 ± 2.3 - NSAIDs, skin/room T˚C</td>
<td>[63]</td>
</tr>
<tr>
<td>Early RA (n = 36 patients)</td>
<td>- LC (n = 20 patients)</td>
<td>- Cold air (-60˚C; 15 min; 10 sessions; hands, knees or ankles) Included in a Complex Rehabilitation Program (40 min exercise, 40 min occupational therapy + ‘Drug therapy’). Total duration?</td>
<td>‘Drug therapy’ only (n = 16)</td>
<td>- Pain VAS - DAS28 → Before and after treatment (10 days?)</td>
<td>S3C101 3/11</td>
<td>- Corticosteroids, NSAIDs, DMARDs, biologics, kinesitherapy, skin/room T˚C, BMI: NA</td>
<td>[64]</td>
</tr>
<tr>
<td>RA (n = 48 patients), AS (n = 12)</td>
<td>- WBC</td>
<td>- WBC (-110˚C for 3 min; twice a day) → Average number of sessions: 15.8 ± 8.37</td>
<td>None</td>
<td>- Pain VAS - DAS 28 (48 patients) - BASDAI (12 patients) → Before and after treatment</td>
<td>S2C001 4/11</td>
<td>- Associated kinesitherapy and physical exercise. - No change in pharmalogical treatment. - Corticosteroids, NSAIDs, kinesitherapy, physical exercise, skin temperature, BMI: NA</td>
<td>[66]</td>
</tr>
</tbody>
</table>

ACR: American College of Rheumatology (Diagnostic criteria for rheumatoid arthritis); B: Blinding; BASDAI: Bath Ankylosing spondylitis Disease Activity Index; C: Control groups; DMARD: Disease activity-modifying drug; LC: Local Cryotherapy; NA: Not assessed; NSAID: Nonsteroidal anti-inflammatory drug; O: Outcome measurement (NOS score); Pain VAS: pain Visual Analogic; RA: Rheumatoid Arthritis; RCTs: R: Randomization; S: Sampling; Scale DAS28: 28 joint-disease activity score (composite score including patient VAS for disease activity, acute-phase reactant (ESR or CRP), tender joint count and swollen joint score); T: Temperature; W: Withdrawals (JADAD score); WBC: Whole-body cryotherapy

Data taken from the cited articles.
The endpoints were compared before and after cryotherapy.

Cryotherapy modalities (technique, temperature, duration and periodicity) were heterogeneous. The main potential confounders were assessed when possible: Corticosteroid, NSAID, disease activity-modifying drug (DMARD), biologic intake, kinesitherapy, physical exercise, room temperature. No serious adverse event was reported in any of the studies.

We could only perform a pooled quantitative analysis for two endpoints: pain VAS and DAS28 in RA patients. For that purpose, six studies were included in the quantitative data analysis (Table 2) [64,65,66–69,71]. Reasons for excluding the seven other studies [8,59–62,65,69] were: one duplicate [69], impossibility to combine data for power Doppler hypersignal endpoint due to different evaluation scores [59–61], as for gout patients: too different designs [8,62], one study mixed patients suffering from heterogeneous rheumatic diseases (inflammatory as well as noninflammatory) [65]. Straub and Hirvonen’s studies were considered as duplicates as they were performed, at least partly, in the same patient cohort [69,70]. For WBC, we only considered -110°C-treated patients in Hirvonen’s study [70].

Results: study quality assessment
Six studies including 257 RA patients were appropriate to be included in quantitative data synthesis. There was one RCT with 40 patients meeting the inclusion criteria [70], two controlled trials [63,64], two studies comparing parallel cryotherapy treatment groups [67,68] and one noncontrolled study [66].

The RCT scored 2 out of 5 (JADAD5 score) [70]. As for the five noncontrolled studies, the mean NOS quality score was 5 ± 1.2 [63,64–66]. Overall, the mean JADAD11 score for the six selected studies was 4.8 ± 1.9. The quality scores for each study are displayed in Table 2.

Results: heterogeneity assessment
We could only perform quantitative analysis for two endpoints: pain VAS (mm) and DAS28 in RA patients after chronic application (7–15 days) (Figures 2 & 3) [63,64–66,68,70].

There was no significant heterogeneity between studies for pain VAS and DAS28 in LC or WBC-treated patients, as shown in Figures 2 & 3, displaying means and 95% confidence intervals. Fisher’s tests showed F0 = 1.48; p: [0.2; 0.3] for pain VAS after local cryotherapy (Figure 2A), F0 = 1.44; p: [0.2; 0.3] for DAS28 after local cryotherapy (Figure 2B), F0 = 1.07; p: [0.3; 0.5] for pain VAS after WBC (Figure 3A), F0 = 0.37; p: [0.5; 0.9] for DAS28 after WBC (Figure 3B).

Paired t-tests were used to assess pain VAS and DAS28 evolution after cryotherapy.

As concerns local cryotherapy, the mean number of cold applications was 17.1 (ranging from 10 to 20), mean temperature of -70.3°C (-30 to -160) during 15.8 ± 7.2 min (7–20). As for WBC and pain VAS (mm), the mean number of applications was 20.2 (8–30) at a mean temperature of -126.5°C (-110 to -160) during 3.2 min (2–5).

The endpoints were compared before and after cryotherapy.

Cryotherapy modalities (technique, temperature, duration and periodicity) were heterogeneous. The main potential confounders were assessed when possible: Corticosteroid, NSAID, disease activity-modifying drug (DMARD), biologic intake, kinesitherapy, physical exercise, room temperature. No serious adverse event was reported in any of the studies.

We could only perform a pooled quantitative analysis for two endpoints: pain VAS and DAS28 in RA patients. For that purpose, six studies were included in the quantitative data analysis (Table 2) [64,65,66–69,71]. Reasons for excluding the seven other studies [8,59–62,65,69] were: one duplicate [69], impossibility to combine data for power Doppler hypersignal endpoint due to different evaluation scores [59–61], as for gout patients: too different designs [8,62], one study mixed patients suffering from heterogeneous rheumatic diseases (inflammatory as well as noninflammatory) [65]. Straub and Hirvonen’s studies were considered as duplicates as they were performed, at least partly, in the same patient cohort [69,70]. For WBC, we only considered -110°C-treated patients in Hirvonen’s study [70].

Results: study quality assessment
Six studies including 257 RA patients were appropriate to be included in quantitative data synthesis. There was one RCT with 40 patients meeting the inclusion criteria [70], two controlled trials [63,64], two studies comparing parallel cryotherapy treatment groups [67,68] and one noncontrolled study [66].

The RCT scored 2 out of 5 (JADAD5 score) [70]. As for the five noncontrolled studies, the mean NOS quality score was 5 ± 1.2 [63,64–66]. Overall, the mean JADAD11 score for the six selected studies was 4.8 ± 1.9. The quality scores for each study are displayed in Table 2.

Results: heterogeneity assessment
We could only perform quantitative analysis for two endpoints: pain VAS (mm) and DAS28 in RA patients after chronic application (7–15 days) (Figures 2 & 3) [63,64–66,68,70].

There was no significant heterogeneity between studies for pain VAS and DAS28 in LC or WBC-treated patients, as shown in Figures 2 & 3, displaying means and 95% confidence intervals. Fisher’s tests showed F0 = 1.48; p: [0.2; 0.3] for pain VAS after local cryotherapy (Figure 2A), F0 = 1.44; p: [0.2; 0.3] for DAS28 after local cryotherapy (Figure 2B), F0 = 1.07; p: [0.3; 0.5] for pain VAS after WBC (Figure 3A), F0 = 0.47; p: [0.5; 0.9] for DAS28 after WBC (Figure 3B).

Paired t-tests were used to assess pain VAS and DAS28 evolution after cryotherapy.

As concerns local cryotherapy, the mean number of cold applications was 17.1 (ranging from 10 to 20), mean temperature of -70.3°C (-30 to -160) during 15.8 ± 7.2 min (7–20). As for WBC and pain VAS (mm), the mean number of applications was 20.2 (8–30) at a mean temperature of -126.5°C (-110 to -160) during 3.2 min (2–5).
Considering WBC and DAS28, the mean number of applications was 14.4 (8–20) at a temperature of -110°C during 2.8 min (2–3).

Results: primary outcomes (pain VAS & DAS28)

As concerns pain, LC (cold packs, cold air, liquid nitrogen applied on 1–5 joints) significantly reduced pain VAS (mm) in 80 RA patients originating from three studies [63,64,70], with 20 of these patients were included in a RCT [70]. Mean pain VAS decreased from 59.10 ± 25.86 [95% CI: 42.17–75.63] to 33.55 ± 20.77 [95% CI: 26.07–56.33] after LC (p < 0.000002). WBC also significantly decreased pain VAS in 124 RA patients from 4 studies [66–68,70] (20 patients

-40 -30 -20 -10 0 10 20

Studies

Pain VAS (mm); mean differences before/after local cryotherapy with 95% CI

Figure 2. Effects of local cryotherapy on pain VAS (A) and DAS28 (B).

Data taken from the cited articles.

Considering WBC and DAS28, the mean number of applications was 14.4 (8–20) at a temperature of -110°C during 2.8 min (2–3).

Results: primary outcomes (pain VAS & DAS28)

As concerns pain, LC (cold packs, cold air, liquid nitrogen applied on 1–5 joints) significantly reduced pain VAS (mm) in 80 RA patients originating from three studies [63,64,70], with 20 of these patients were included in a RCT [70]. Mean pain VAS decreased from 59.10 ± 25.86 [95% CI: 42.17–75.63] to 33.55 ± 20.77 [95% CI: 26.07–56.33] after LC (p < 0.000002). WBC also significantly decreased pain VAS in 124 RA patients from 4 studies [66–68,70] (20 patients

-40 -30 -20 -10 0 10 20

Studies

Pain VAS (mm); mean differences before/after local cryotherapy with 95% CI

Figure 3. Effects of whole-body cryotherapy on pain VAS (A) and DAS28 (B). Mean differences in pain VAS (mm) or DAS28 before/after LC or WBC are represented for each of the six studies included in the meta-analysis [63,64,66–68,70], with 95% confidence intervals. Heterogeneity was also tested using Fisher’s test (F0 and p-values are shown on the graphs). Design of the studies: RCT [70], controlled trials [63,64], parallel cryotherapy treatment groups [67,68] and noncontrolled study [66]. DAS28: 28-joint disease Activity Score (composite score including patient VAS for disease activity, acute-phase reactant (ESR or CRP), tender joint count and swollen joint score); LC: Local Cryotherapy; n: Number of patients;
originated from a RCT [66]. Mean pain VAS decreased from 53.15 ± 20.45 (95% CI: 49.55–56.75) at baseline to 35.64 ± 26.69 mm (95% CI: 30.94–40.34) after WBC (p < 0.000002).

As regards disease activity, LC significantly reduced DAS28 in 80 RA patients from 3 studies [63,64,70], with 20 patients included in a RCT [70]. Mean DAS28 decreased from 5.45 ± 1.37 (95% CI: 5.14–5.75) at baseline to 4.69 ± 1.16 (95% CI: 4.44–4.95) after LC (p < 0.0001), which could suggest a systemic effect of LC that was applied on several joints (4–6) in these patients. WBC also significantly reduced DAS28 in 83 RA patients from 3 studies [66,67,70], including 20 patients originating from a RCT [70]. Mean DAS28 decreased from 4.27 ± 0.83 (95% CI: 4.02–4.52) at baseline to 3.79 ± 0.81 (95% CI: 3.56–4.02) after WBC (p < 0.002).

Results: secondary outcomes (tolerance & physiological effects)

As concerns tolerance, no major adverse effect was reported in any of the screened studies. Cryotherapy is overall a well-tolerated treatment [8,9] compared with other adjunct therapies in RA such as corticosteroids and NSAIDs. The contraindications are patients with systemic lupus erythematosus, vasculitis, cryoglobulinemia, cold hypersensitivity, allergy or urticarial, cold-induced bronchospasm, Raynaud’s phenomenon, acrocyanosis, sickle cell anemia, skin circulation disorders, paroxysmal cold hemoglobinuria, heart arrhythmia, symptomatic cardiovascular or lung disease, uncontrolled hypertension, advanced diabetes mellitus and cutaneous hypoesthesia. It should be avoided in patients with scleroderma, spinal cord injury or poor circulation (risk of skin lesions such as frostbite, chilblains or necrosis). Beyond a certain application duration threshold (for...
Table 3. Local cryotherapy techniques.

<table>
<thead>
<tr>
<th>Local cryotherapy</th>
<th>Physical form</th>
<th>Temperature</th>
<th>Pressure</th>
<th>Duration</th>
<th>Skin temperature</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ice bags</td>
<td>Ice cubes, mixture of water and crushed Fee</td>
<td>0°C</td>
<td>Straps for compression</td>
<td>10–30 min</td>
<td>13–15°C in 15–30 min</td>
<td>[72][20]</td>
</tr>
<tr>
<td>Cold packs</td>
<td>Joint-shaped, flexibility (CryoCuff®; Polar Care®) Gel-filled cold pack (TMP Tishaus®) 12X29 cm</td>
<td>-15°C</td>
<td>+</td>
<td>10–30 min; three-times a day for 7 days</td>
<td>22–24°C</td>
<td>[69]</td>
</tr>
<tr>
<td>Gas (thermal shock)</td>
<td>Cold air (filtered ambient air: no consumables) Cryo 5®: 40001/min</td>
<td>-30°C</td>
<td>0</td>
<td>5 min</td>
<td>9.7°C in 5 min</td>
<td>[19]</td>
</tr>
<tr>
<td></td>
<td>Liquid Nitrogen vapors (Medivent®)</td>
<td>-160°C</td>
<td>0</td>
<td>6.5 min</td>
<td>9.8°C (minimal value)</td>
<td>[20]</td>
</tr>
<tr>
<td></td>
<td>CO₂ microcrystals (Cryotron®)</td>
<td>-78°C</td>
<td>50 bars (2–75 bars)</td>
<td>45 s–2 min (2/day); flare duration</td>
<td>7.3°C</td>
<td>[73]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90s (3/day)</td>
<td></td>
<td>2°C in 20–30S</td>
<td>[8]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12°C</td>
<td>[83]</td>
</tr>
</tbody>
</table>

instance, 20–30 min for cold packs, 2 min for CO₂ cryotherapy at -78°C as indicated in manufacturers’ instructions for use), cryotherapy can be painful and proinflammatory. Anyway, specific instructions for use should be read carefully before using any cryotherapy device, especially as concerns maximal recommended application duration. During CO₂ cryotherapy, skin temperature must be kept above 2°C, gas blow must be performed at 10–15 cm from skin surface (4–6 cm for cold air) [15], the application area must be swept and ice crystal formation on skin surface must be avoided (frostbite, chilblain and burn prevention). Cold packs must not be in direct contact with the skin. Cryotherapy can also induce nerve lesions (it must be used with caution in the vicinity of superficial nerves) and slow wound healing.

As for cryotherapy, physiological effects in RA, LC may reduce joint temperature to about 30°C in healthy as well as arthritic human knees for 2 h [19,20].

Studies in animal models and other medical fields suggest that mild hypothermia (with local and/or core body temperatures around 30°C) may inhibit white blood cell infiltrate formation [42], proinflammatory cytokine gene transcription [23,30], enzymatic pathways such as collagenases [41], metalloproteinases [39,40], proangiogenic agents such as VEGF [36]. In RA, cryotherapy might decrease proinflammatory cytokine and pro-olecytic enzyme levels, but studies are rare. LC significantly decreased serum TNF-α and tended to decrease serum IL-6 levels in 40 RA patients [63]. LC and WBC tended to decrease serum IL-6 levels in 59 RA patients [69]. WBC significantly decreased serum histamine levels in 20 RA patients [71]. In experiments using RA synovial collagenase cultured with human collagen fibrils, the authors showed a four-time decreased collagen lysis at 33 versus 36°C [41]. In arthritic zymosan-injected rabbits, ice chip application caused a non-significant decrease in cell infiltration and synovial hyperplasia [72]. These results hold strong therapeutic promises in RA. However, studies about cryotherapy’s molecular effects in RA are scarce and heterogeneous, so we could not perform any quantitative data analysis.

Discussion

Pooling 6 studies including 257 RA patients, we show that chronic local or WBC (14–20 applications) significantly decreases pain VAS (mm) and DAS28 (within-group effect size).

As concerns control groups, 16 patients were treated with ‘drug therapy’ and compared with LC-treated patients [64] and 17 patients exposed to magnetic fields were compared with WBC-treated patients [67]. These control groups were poorly described, and the studies were not randomized, so we could not perform any comparison with pooled mean differences in cryotherapy-treated patients nor calculate any between-group effect size. We excluded control groups with heat application that has proinflammatory effects [20]. It is of course difficult to create placebo groups for cryotherapy. All the patients in the selected studies received associated pharmacological treatment. This drug therapy intake (NSAIDs, corticosteroids, DMARDs and biologics) was not precisely described in four out of six studies. However, RA treatment is quite standardized and pharmacological treatment protocols (drugs and doses) remained stable before and throughout the studies, so the variations in pain VAS and DAS28 scores are likely to reflect cryotherapy’s effects as an adjunct therapy.

We pooled patients treated with different cryotherapy techniques, because group sizes were not sufficient for separate analyses, and because no significant difference for considered
endpoints was found between these techniques in studies using parallel treatment arms. Notably, we could not perform any subgroup analysis comparing cold packs (cooling) to gaseous cryostimulation in LC-treated patients due to insufficient sample sizes [63,70]. Cryotherapy protocols were quite heterogeneous (duration, intensity, considered joints, physical agents, temperature, duration and periodicity) as summarized in Table 2. The overall quality scores of the selected studies were quite low, but they reflect currently available evidence about cryotherapy. Studies were mainly limited by a lack of randomization and valid control groups. It is obviously difficult to find appropriate placebo groups for cryotherapy. Dropouts and withdrawals were also poorly reported. However, as cryotherapy is a very well-tolerated treatment, and as no major side effect was reported in any of the selected studies, the amount of missing data is likely to be very low.

Importantly, despite various cryotherapy modalities and potential confounders, the six selected studies showed very homogeneous results (Figure 2).

Unlike Welsh’s Cochrane meta-analysis, we excluded articles dealing with postoperative cryotherapy, as surgery by itself might interfere with joint inflammation (Tables 1 & 2).

Expert commentary & five-year view

Clinical practice and physiological rationale strongly suggest a potential interest of cryotherapy as an adjunct therapy in rheumatic inflammatory diseases.

Cryotherapy applied locally on an inflamed joint allows to reach a 30°C intra-articular temperature plateau, with a possibly 2–3 h remanent local hypothermia [19,20]. Studies conducted in other medical fields suggest that it might therefore downregulate such proangiogenic and proinflammatory pathways as VEGF, proinflammatory cytokines and enzymatic activities involved in synovial microvascular hyperplasia, joint inflammation and destruction (Figure 4).

Synovial and systemic endothelial dysfunction in RA induce pain, joint inflammation and destruction and increased cardiovascular morbidity and mortality. Cryotherapy, by upregulating noradrenalin pathway, could downregulate IL-6 and i-NOS pathways, which are known to be involved in endothelial dysfunction an inflammation [3]. Further studies are needed to establish these molecular effects of cryotherapy specifically in RA. Studies in animal models such as collagen-induced arthritis or adjuvant-induced arthritis will certainly lead to a better description of cryotherapy effects on these promising molecular targets in the field of rheumatology, as already the case in neurology for instance, with well-known therapeutic effects of mild hypothermia after brain ischemia [23,24].

We could show a significant decrease in pain VAS (mm) and DAS28 in RA patients after chronic LC as well as WBC (within-group effect size). This result was remarkably constant among the six selected studies (Figure 2). However, we could not calculate any between-group effect size because available control groups were small and methodologically unsatisfying. Randomized trials with valid control groups and stronger methodology are required in order to measure this effect size more accurately.

In light of the results of this systematic review and considering a solid biological rationale, cryotherapy deserves to be evaluated as a full therapeutic option in patients without any corticosteroid, NSAID, DMARD, biologic or physical therapy. Short-term cryotherapy effects should also be addressed. LC applied once to an inflamed joint has been shown to decrease synovial power Doppler hypersignal in RA, which is a good reflect of synovial neoangiogenesis and inflammation [60,61]. Our team is currently studying the effects of two local cryotherapy applications on synovial power Doppler hypersignal as well as synovial fluid cytokine and VEGF levels in arthritic patients.

In order to conduct these important studies, a better standardization of cryotherapy techniques will be required (Table 3). Optimal cryotherapy protocols need to be precisely defined (physical agent, temperature and duration periodicity). It is notably important to determine, for each cryotherapy technique, the therapeutic range and the cold intensity threshold beyond which it may become proinflammatory [10,20,59,69]. Gaseous LC might induce a more pronounced and acute decrease in tissue temperature (thermal shock) and cold packs a deeper

Table 4. Ice-water and whole-body cryotherapy techniques.

<table>
<thead>
<tr>
<th>Physical form</th>
<th>Temperature</th>
<th>Pressure</th>
<th>Duration</th>
<th>Skin temperature</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ice-water Immersion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ice water</td>
<td>0–20°C</td>
<td>+</td>
<td>0–2°C for 20 s (three-times a week for 12 weeks)</td>
<td>[22,45]</td>
<td></td>
</tr>
<tr>
<td>Whole-body cryotherapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryogenic chambers</td>
<td>-60°C to 140°C</td>
<td>0</td>
<td>2–3 min</td>
<td>12–16°C (110*0)</td>
<td>[84]</td>
</tr>
<tr>
<td>Cold air cooled by liquid</td>
<td>< (1 or 2 acclimation chambers)</td>
<td></td>
<td>2 min (three-times/week; 12 weeks)</td>
<td>[45]</td>
<td></td>
</tr>
<tr>
<td>Cryogenic chambers</td>
<td>-130°C</td>
<td></td>
<td>2 min; three-times a day; 7 days</td>
<td>[68]</td>
<td></td>
</tr>
<tr>
<td>Cold air cooled by liquid</td>
<td></td>
<td></td>
<td>3 min/day–10 days</td>
<td>11°C (forearm)</td>
<td>[81]</td>
</tr>
</tbody>
</table>

Data were taken from the cited articles.

400 endpoints was found between these techniques in studies using parallel treatment arms. Notably, we could not perform any subgroup analysis comparing cold packs (cooling) to gaseous cryostimulation in LC-treated patients due to insufficient sample sizes [63,70]. Cryotherapy protocols were quite heterogeneous (duration, intensity, considered joints, physical agents, temperature, duration and periodicity) as summarized in Table 2. The overall quality scores of the selected studies were quite low, but they reflect currently available evidence about cryotherapy. Studies were mainly limited by a lack of randomization and valid control groups. It is obviously difficult to find appropriate placebo groups for cryotherapy. Dropouts and withdrawals were also poorly reported. However, as cryotherapy is a very well-tolerated treatment, and as no major side effect was reported in any of the selected studies, the amount of missing data is likely to be very low.

405 Importantly, despite various cryotherapy modalities and potential confounders, the six selected studies showed very homogeneous results (Figure 2).

410 Unlike Welsh’s Cochrane meta-analysis, we excluded articles dealing with postoperative cryotherapy, as surgery by itself might interfere with joint inflammation (Tables 1 & 2).

415 **Expert commentary & five-year view**

420 Clinical practice and physiological rationale strongly suggest a potential interest of cryotherapy as an adjunct therapy in rheumatic inflammatory diseases.

425 Cryotherapy applied locally on an inflamed joint allows to reach a 30°C intra-articular temperature plateau, with a possibly 2–3 h remanent local hypothermia [19,20]. Studies conducted in other medical fields suggest that it might therefore downregulate such proangiogenic and proinflammatory pathways as VEGF, proinflammatory cytokines and enzymatic activities involved in synovial microvascular hyperplasia, joint inflammation and destruction (Figure 4).

430 Synovial and systemic endothelial dysfunction in RA induce pain, joint inflammation and destruction and increased cardiovascular morbidity and mortality. Cryotherapy, by upregulating noradrenalin pathway, could downregulate IL-6 and i-NOS pathways, which are known to be involved in endothelial dysfunction an inflammation [3]. Further studies are needed to establish these molecular effects of cryotherapy specifically in RA. Studies in animal models such as collagen-induced arthritis or adjuvant-induced arthritis will certainly lead to a better description of cryotherapy effects on these promising molecular targets in the field of rheumatology, as already the case in neurology for instance, with well-known therapeutic effects of mild hypothermia after brain ischemia [23,24].

440 We could show a significant decrease in pain VAS (mm) and DAS28 in RA patients after chronic LC as well as WBC (within-group effect size). This result was remarkably constant among the six selected studies (Figure 2). However, we could not calculate any between-group effect size because available control groups were small and methodologically unsatisfying. Randomized trials with valid control groups and stronger methodology are required in order to measure this effect size more accurately.

445 In light of the results of this systematic review and considering a solid biological rationale, cryotherapy deserves to be evaluated as a full therapeutic option in patients without any corticosteroid, NSAID, DMARD, biologic or physical therapy.

450 Short-term cryotherapy effects should also be addressed. LC applied once to an inflamed joint has been shown to decrease synovial power Doppler hypersignal in RA, which is a good reflect of synovial neoangiogenesis and inflammation [60,61]. Our team is currently studying the effects of two local cryotherapy applications on synovial power Doppler hypersignal as well as synovial fluid cytokine and VEGF levels in arthritic patients.

455 In order to conduct these important studies, a better standardization of cryotherapy techniques will be required (Table 3). Optimal cryotherapy protocols need to be precisely defined (physical agent, temperature and duration periodicity). It is notably important to determine, for each cryotherapy technique, the therapeutic range and the cold intensity threshold beyond which it may become proinflammatory [10,20,59,69]. Gaseous LC might induce a more pronounced and acute decrease in tissue temperature (thermal shock) and cold packs a deeper

460 ---

465 **Table 4. Ice-water and whole-body cryotherapy techniques.**

<table>
<thead>
<tr>
<th>Physical form</th>
<th>Temperature</th>
<th>Pressure</th>
<th>Duration</th>
<th>Skin temperature</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ice-water Immersion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ice water</td>
<td>0–20°C</td>
<td>+</td>
<td>0–2°C for 20 s (three-times a week for 12 weeks)</td>
<td>[22,45]</td>
<td></td>
</tr>
<tr>
<td>Whole-body cryotherapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryogenic chambers</td>
<td>-60°C to 140°C</td>
<td>0</td>
<td>2–3 min</td>
<td>12–16°C (110*0)</td>
<td>[84]</td>
</tr>
<tr>
<td>Cold air cooled by liquid</td>
<td>< (1 or 2 acclimation chambers)</td>
<td></td>
<td>2 min (three-times/week; 12 weeks)</td>
<td>[45]</td>
<td></td>
</tr>
<tr>
<td>Cryogenic chambers</td>
<td>-130°C</td>
<td></td>
<td>2 min; three-times a day; 7 days</td>
<td>[68]</td>
<td></td>
</tr>
<tr>
<td>Cold air cooled by liquid</td>
<td></td>
<td></td>
<td>3 min/day–10 days</td>
<td>11°C (forearm)</td>
<td>[81]</td>
</tr>
</tbody>
</table>

Data were taken from the cited articles.

470
Cryotherapy in inflammatory rheumatic diseases

Review

Corticosteroid and NSAID toxicity represent a major public health concern, with numerous, well-known, side effects and complications. Cryotherapy used as an adjuvant therapy and applied using standardized and optimized protocols could help to spare corticosteroid and NSAID doses in these patients, and subsequently decrease cardiovascular, infectious, gastrointestinal morbidity and mortality. This treatment option may be of special interest in an increasing number of patients with NSAID contraindications (cardiovascular diseases, diabetes, kidney deficiency, etc). This dose-sparing effect should also be addressed and measured specifically in randomized controlled trials.

Local cryotherapy is a cheap and very well-tolerated therapeutic option, which can be easily performed at patient’s home. In the future, it could contribute to reduce the economic burden and iatrogenicity related to the treatment of arthritic patients, especially for the elderly.

Financial & competing interests disclosure
The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.

Key issues

- Molecular pathways targeted by cryotherapy (proinflammatory cytokines, VEGF, cartilage-degrading enzymes) suggest interesting anti-inflammatory properties in rheumatic inflammatory diseases, which should be further investigated.
- Cryotherapy could be an interesting adjunct therapy in these diseases with a better safety profile as compared with corticosteroids and NSAIDs.
- By pooling six studies, we show that chronic local cryotherapy and WBC significantly reduce pain visual analogic scale and 28-joint disease activity score in rheumatoid arthritis (within-group effect size). However, methodological issues and a lack of control groups prevent from calculating any between-group effect size.

References

Papers of special note have been highlighted as:

• of interest
** of considerable interest

15 Korman P, Straburszynska-Lupa A, Romanowski W, Trafarski A. Temperature changes in rheumatoid hand treated with

21 The only study monitoring intrajoint temperature in arthritic patients treated with local cryotherapy. Local cryotherapy induces an intrajoint temperature plateau (about 30°C for 2 h).

42 An experimental study suggesting that cryotherapy might downregulate collagenase activity in RA.
Cryotherapy in inflammatory rheumatic diseases

Review

• A randomized controlled trial showing a decrease in serum IL-6 levels in RA patients without corticosteroids after chronic cryotherapy (LC applied to five joints simultaneously or WBC (-60°C) both performed two- or three-times a day for 7 days). Conversely, -110°C WBC following the same application protocol increased serum IL-6 levels. This suggests potential systemic anti-inflammatory effects of cryotherapy and a possible pro-inflammatory effect of cryotherapy beyond a cold stimulation intensity threshold.

• A randomized controlled trial showing significant decreases in pain VAS and DAS28 in RA patients treated with LC as well as WBC (performed two- or three-times a day for 7 days)

71 Wojtecka-Lukasik E, Kiec-Zapalska-Orlowska K, Gazewska E et al. Cryotherapy decreases histamine levels in the blood of patients with rheumatoid...

Websites

101 International Standard Randomised Controlled Trial Number Register. www.controlled-trials.com/isrctn

102 ClinicalTrials.gov. www.clinicaltrials.gov

103 WHO. International Clinical Trials Registry Platform. www.who.int/ictrp/search/en

Cryotherapy in inflammatory rheumatic diseases: a systematic review

Xavier Guillot*¹,², Nicolas Tordi³, Laurent Mourot⁴, Céline Demougeot², Benoît Dugué⁴, Clément Prati¹,², and Daniel Wendling¹,⁵

¹Department of Rheumatology, University Hospital of Besançon, boulevard Fleming, 25030 Besançon Cedex, France.

²University of Franche-Comté, EA 4267, Exercise Performance Health Innovation Platform and Clinical Investigation Center, Inserm Center CIT 808, Franche-Comté University, Besançon Cedex, France.

³University of Franche-Comté, EA 4660, Exercise Performance Health Innovation Platform and Clinical Investigation Center, Inserm Center CIT 808, Franche-Comté University, Besançon Cedex, France.

⁴University of Poitiers, Laboratoire “Vieillissement, Exercice, Mobilité (MOVE) -EA6314, 86000 Poitiers Cedex, France.

⁵University of Franche-Comté, EA 4266, Pathogens and Inflammation, Franche-Comté University, Besançon Cedex, France.

*Author for correspondence:

Tel.: +33 038_166 8241
Abstract

The aim of this article was to review current evidence about cryotherapy in inflammatory rheumatic diseases (therapeutic and biological effects).

For therapeutic effects, we performed a systematic review (PubMed, EMBASE, Cochrane Library, LILACS databases, unpublished data) and selected studies including non-operated and non-infected arthritic patients treated with local cryotherapy (LC) or whole-body cryotherapy (WBC).

By pooling six studies including 257 rheumatoid arthritis (RA) patients, we showed a significant decrease in pain visual analogic scale (VAS) (mm) and 28-joint-disease activity score (DAS28) after chronic cryotherapy in RA patients.

For molecular pathways, local cryotherapy (LC) induces an intra-joint temperature decrease, which might down-regulate several mediators involved in joint inflammation and destruction (cytokines, cartilage-degrading enzymes, pro-angiogenic factors), but studies in RA are rare.

Cryotherapy should be included in RA therapeutic strategies as an adjunct therapy, with potential corticosteroid and non-steroidal anti-inflammatory drug dose-sparing effects. However, techniques and protocols should be more precisely defined in randomized-controlled trials with stronger methodology.

KEYWORDS: cryotherapy, cytokines, DAS28, enzymes, pain VAS, DAS28, cytokines, enzymes
Inflammatory joint diseases, such as rheumatoid arthritis (RA), represent a major public health concern, with both synovial inflammation causing joint destruction, pain and disability [1] and systemic inflammation thought to increase cardiovascular risk and mortality [2,3]. Recently, progress in immunology provided new therapeutic targets and new drugs such as biologic agents allowing to achieve clinical remission and prevent joint destruction [4,5]. These treatments, however, remain expensive, with rare but potentially life-threatening side-effects such as infections [6]. Long-term nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids also have a well-known toxicity [7]. So the development of adjunct therapies in order to spare biologic and corticosteroid doses is a key focus in these diseases.

Cryotherapy is used empirically in a wide range of rheumatic diseases as a symptomatic treatment, with well-known analgesic, antiphlogistic, myorelaxing, vasoconstrictive, anti-inflammatory, enzyme-blocking, and anti-oxidative effects [8–10]. It can be used not only in inflammatory joint diseases (such as crystal-induced arthropathies, spondyloarthropathies, and rheumatoid arthritis RA [10]), but also in such painful rheumatic condition as osteoarthritis [8,9], fibromyalgia [11], shoulder capsulitis [12] and muscle damage [13]. Whole-body cryotherapy (WBC) also showed effects on bone biomarkers [14]. This adjunct treatment is cheap (at least for local cryotherapy [LC]) and generally well-tolerated [15,16]. Technical modalities (local/general application, duration, number of sessions [17], physical and physical form) are very diverse and lack standardization [18]. This widespread use contrasts with a poor level of evidence [18]. Cryotherapy has been shown to decrease intra-articular temperature (T°C) in human knees to 30°C [19,20]. This intra-joint temperature is in the same range as therapeutic mild hypothermia used in several other medical fields. Mild
hypothermia (28–34°C) has shown anti-inflammatory effects in healthy subjects [21,22] and in very diverse pathologies such as cerebral ischemia in humans [23] and murine models [23,24], traumatic tissue injury in murine models [25,26] and humans [27] and haemorrhagic shock in rats [28], cardiac arrest in humans [29], coma in pigs [30], coronary artery or cardiopulmonary bypass in humans [31], aortic ischemia/reperfusion in mice [32], mechanical ventilation in rats [33,34], post-exercise hyperthermia in humans [35], age-related macular degeneration in culture experiments using a retinal cell line [36] and pancreatitis in rats [37]. These studies showed potential effects on important molecular/cellular mechanisms involved in synovial inflammation and joint destruction such as pro-inflammatory cytokines [21,25,38], VEGF [36], enzymatic pathways (metalloproteinases [39,40], collagenase [41]), adhesion molecules (ICAM-1) and white blood cell infiltrate formation in rats [42] and humans [43], oxidative stress in rats [24] and humans [44], norepinephrine in humans [24,45,46]. This suggests potential therapeutic effects in inflammatory rheumatic diseases such as RA, as some of these molecular pathways are known to be related to pain, disease activity scores including 28-joint-disease activity score (DAS28), biological inflammation and radiologic joint damage.

The aim of this article study was to review data and evidence concerning cryotherapy’s effects in inflammatory rheumatic diseases.

First, we performed a systematic review of the literature about cryotherapy’s therapeutic effects in rheumatic inflammatory joint diseases. The primary endpoints were pain assessed by visual analogic scale (VAS) and 28-joint-disease activity score (DAS28). The secondary endpoints were tolerance and molecular anti-inflammatory effects of cryotherapy in these diseases.
Cryotherapy effects on pain and disease activity in rheumatoid arthritis: systematic review

Methods

We followed the PRISMA statement checklist for meta-analysis and systematic review quality criteria [47].

Searching

We used PubMed, EMBASE, LILACS and Cochrane library databases. Keywords "cryotherapy", "cryotherapy arthritis", "cryotherapy inflammation", "cold", "cryostimulation" and "WBC" were used alone and in combination. We considered articles with available abstracts in English, German, Spanish, French language and in referenced journals from their inception to March 2013. We also manually screened references cited in the selected articles, considered abstracts from rheumatology congresses (ACR, EULAR since 2001).

As concerns unpublished data, we considered the International Standard Randomised Controlled Trial Number Register [101] website (http://www.controlled-trials.com/isrctn), The National Institute of Health [102] website (http://www.clinicaltrials.gov), and the WHO website (http://www.who.int/ictrp/search/en) [103]. The screening was performed by two independent reviewers with discussion when needed in order to reach consensus.

Eligibility and study selection

Selection criteria for cryotherapy therapeutic effect evaluation were studies including inflammatory rheumatic disease patients (i.e., RA, microcrystals, peripheral spondyloarthritides) treated with LC or WBC, with endpoints evaluating pain and joint
disease activity (pain VAS, ESR, CRP, DAS28, and Doppler activity). Articles about post-operative joint cryotherapy and infectious diseases were excluded. We selected original articles, abstracts, reviews, and meta-analyses. Duplicates were removed.

<h3>Quality assessment</h3>

For cryotherapy therapeutic effects, we analyzed technical cryotherapy modalities in detail (physical form and device, duration, skin or joint temperature).

The methodology was also evaluated: study population, randomization, blinding, control groups (other therapeutic modalities such as pharmacological treatments, physical therapy, different cryotherapy techniques or placebo groups), withdrawal and dropout reporting, as well as potential confounders (corticosteroids, NSAIDs, biologics, physical exercise, kinesitherapy, BMI, considered joint) when assessed in the studies. Data extraction was performed by two independent reviewers.

Therefore, we assessed study quality based on specific validated scores depending on the study design. A JADAD 5-point scale was used for randomized controlled trials [48]. For non-randomized studies, we used the Newcastle–Ottawa Scale (NOS) system (0–9) [12041]. Furthermore, a JADAD 11-point scale [48] was applied to all the selected studies whatever their design in order to compare them globally and to provide a general qualitative overview. Studies that scored 6 or higher using JADAD 11-point scale (3/5 with JADAD-5 and 5/9 with NOS) were considered to be of higher quality. This quality assessment was also performed by two independent reviewers.

<h3>Quantitative data synthesis</h3>

Most outcomes were continuous in nature (pain VAS, DAS28). When pooling data from different trials was possible, the principal measures of effect were means ± SD (weighted
mean differences before/after cryotherapy or relative to control groups when possible). Heterogeneity was assessed graphically with 95% confidence intervals and statistically tested using Fisher’s variance comparison tests. Heterogeneity threshold was calculated for each primary outcome (F = 2.73 or greater was significantly heterogeneous for pain VAS in patients treated with LC, F = 2.7 for pain VAS in WBC-treated patients, F = 2.73 for DAS28 in LC-treated patients and F = 3.12 in WBC-treated patients). We used a fixed effect model. Pooled means ± SD were compared before/after cryotherapy (within-group effect-size; paired t tests; α risk 5%) and the mean differences before/after treatment were compared between cryotherapy-cryotherapy-treated patients and control groups when available (between-group effect-size; unpaired t tests; α = 5%; variance comparison using Fisher’s test).

Data were analyzed using Statview© (SAS Institute Inc. Version 5.0) device. There were no a-priori sensitivity and subgroup analyses. We also considered unpublished data in order to minimize publication bias.

Results

Flowchart

The Flowchart is shown in **Figure 1**.

Screening results

EMBASE database displayed 23,228 citations for “cryotherapy” keyword, 22,632 results for “cold”, 1,784 results for “cold arthritis”, 445 results for “cryotherapy arthritis”, 95 results for “WBC”, 17,445 results for “cold inflammation”, 3,402 results for “cryotherapy inflammation”, and 32 results for “cryostimulation”.

The LILACS database displayed 230 results for “cryotherapy” keyword, 1 for “cryotherapy arthritis”, 7 for “cryotherapy inflationation”, 52 for “WBC”, 1,479 results for “cold” keyword, 6 for “cold arthritis”, 19 for “cold inflammation” and 34 results for “cryostimulation”.

In EULAR congress abstracts, we found 17 and 132 abstracts related to “cryotherapy” and “cold”, respectively, since 2001 on EULAR website. (ACR website: 21 abstracts related to “cold” in 2006 – 2011, none related to “cryotherapy”).

The International Standard Randomised Controlled Trial Number Register website displayed 15 results for “cryotherapy” keyword and 99 results for “cold” keyword. The National Institutes of Health website displayed 188 results for “cryotherapy” keyword (4 for “cryotherapy arthritis”, 5 for “whole-WBC”), and 645 results for “cold” keyword (16 for “cold arthritis”). The WHO website displayed 1,830 results for “cryotherapy” keyword (56 for “cryotherapy arthritis”, 22 for “whole body cryotherapy”) and 3,020 results for “cold” keyword (949 for “cold arthritis”).

Article selection process

First, articles were excluded on the basis of title and abstract: numerous records dealing with completely different scientific or medical fields such as dermatology, gynaecology, urology, oncology, ophthalmology, infectious or lung diseases, chemistry, etc., very low temperature-cell lysing-cryotherapy, local cryotherapy not applied to joints (spine, etc.).

After duplicate removal, we found 511 records potentially dealing with cryotherapy in all
types of joint diseases according to the titles and abstracts. After applying eligibility criteria, we screened 146 potentially relevant references in the field of therapeutic cryotherapy in inflammatory joint diseases.

Then, we excluded 124 articles for the following reasons: duplicates, articles related to postoperative cryotherapy, non-inflammatory diseases, non-rheumatologic diseases, with inadequate outcomes or endpoints, lacking accuracy in cryotherapy technical description or numerical data reporting, with full text not available and insufficient data in the abstract.

A Cochrane meta-analysis including five RCT about cryotherapy in RA [49–53] was published in 2001 and updated in 2011 [18]. None of these articles was appropriate to be used in our meta-analysis, as summarized in Table 1. Two of the studies were performed in operated patients [49,50]. The outcomes [46,47] or outcome measures were inappropriate to our analysis [49,52,53]. Cold application was also probably insufficient in intensity [49,50], in duration [51] or periodicity [51–53]. Furthermore, hot packs used in three of the studies [50,52,53] could have pro-inflammatory properties [20] and therefore do not seem to be relevant treatments for control group.

The remaining articles (22 articles including 8 RCTs for therapeutic effects) were assessed for further evaluation on the basis of full-text article when available. Nine articles were further excluded [9,10,51–58]. The 13 remaining studies were potentially appropriate to be included in a meta-analysis.

There were five RCTs, two non-randomized controlled studies, three studies comparing several cryotherapy techniques in parallel treatment arms, and three non-controlled studies. Seven articles dealt with local cryotherapy [8,59–64], four with WBC [65–68] and two with both (FIGURE 1) [69,70] (FIGURE 1).
characteristics of the studies selected for quantitative analysis (cryotherapy therapeutic effects)

Study characteristics and quality assessment results are summarized in Table 2.

The endpoints were compared before and after cryotherapy.

Cryotherapy modalities (technique, temperature, duration, and periodicity) were heterogeneous. The main potential confounders were assessed when possible: Corticosteroid, NSAID, disease activity-modifying drug (DMARD), biologic intake, kinesitherapy, physical exercise, room temperature. No serious adverse event was reported in any of the studies.

We could only perform a pooled quantitative analysis for two endpoints: pain VAS and DAS28 in RA patients. For that purpose, six studies were included in the quantitative data analysis (Table 2) [64,65,67–69,71]. Reasons for excluding the seven other studies [8,59–62,65,69] were: one duplicate [69], impossibility to combine data for power Doppler hypersignal endpoint due to different evaluation scores [59–61], as for gout patients: too different designs [8,62], one study mixed patients suffering from heterogeneous rheumatic diseases (inflammatory as well as non-inflammatory) [65]. Straub and Hirvonen’s studies were considered as duplicates as they were performed, at least partly, in the same patient cohort [69,70].

For WBC, we only considered −110°C-treated patients in Hirvonen’s study [70].

Results: study quality assessment

Six studies including 257 RA patients were appropriate to be included in quantitative data
There was one RCT with 40 patients meeting the inclusion criteria [70], two controlled trials [63,64], two studies comparing parallel cryotherapy treatment groups [67,68] and one non-controlled study [66].

The RCT scored 2 out of 5 (JADAD5 score) [70]. As for the five non-controlled studies, the mean NOS quality score was 5+/−1.2 [63,64,66–68]. Overall, the mean JADAD11 score for the six selected studies was 4.8+/−1.9. The quality scores for each study are displayed in Table 2.

Results: heterogeneity assessment

We could only perform quantitative analysis for two endpoints: pain VAS (mm) and DAS28 in RA patients after chronic application (7–15 days) (Figures 2 & 3) [63,64,66–68,70]. (Figures 2 and 3).

There was no significant heterogeneity between studies for pain VAS and DAS28 in LC or WBC-treated patients, as shown in Figures 2 and 3, displaying means and 95% confidence intervals. Fisher’s tests showed $F_0 = 1.48; p: [0.2; 0.3]$ for pain VAS after local cryotherapy (Figure 2A), $F_0 = 1.44; p: [0.2; 0.3]$ for DAS28 after local cryotherapy (Figure 2B), $F_0 = 1.07; p: [0.3; 0.5]$ for pain VAS after WBC (Figure 3A), $F_0 = 0.47; p: [0.5; 0.9]$ for DAS28 after WBC (Figure 3B).

Paired t-tests were used to assess pain VAS and DAS28 evolution after cryotherapy.

As concerns local cryotherapy, the mean number of cold applications was 17.1 (ranging from 10 to 20), mean temperature of $-70.3°\text{C} (-30 to -160)$ applied for 11.5 min (3 to 30).

As for WBC and pain VAS (mm), the mean number of applications was 20.2 (8 to 30) at a mean temperature of $-126.5°\text{C} (-110 to -160)$ during 3.2 min (2 to 5).
Considering WBC and DAS28, the mean number of applications was 14.4 (8–20) at a temperature of −110°C during 2.8 min (2–3).

Results: primary outcomes (pain VAS and DAS28)

As concerns pain, LC (cold packs, cold air, liquid nitrogen applied on 1–5 joints) significantly reduced pain VAS (mm) in 80 RA patients originating from three studies [63,64,70] with (20 of these patients were included in a RCT [70]). Mean pain VAS decreased from 59.10 ± 25.86 (95% CI: [42.17–75.63]) to 33.55 ± 20.77 (95% CI: [26.07–56.33]) after LC (p < 0.000002). WBC also significantly decreased pain VAS in 124 RA patients from 4 studies [66,67,68,70] (20 patients originated from a RCT [66]). Mean pain VAS decreased from 53.15 ± 20.45 (95% CI: [49.55–56.75]) at baseline to 35.64 ± 26.69 mm after WBC (95% CI: [30.94–40.34]) after WBC (p < 0.000002).

As regards disease activity, LC significantly reduced DAS28 in 80 RA patients from 3 studies [63,64,70], with 20 patients included in a RCT [70]. Mean DAS28 decreased from 5.45 ± 1.37 (95% CI: [5.14–5.75]) at baseline to 4.69 ± 1.16 (95% CI: [4.44–4.95]) after LC (p < 0.0001), which could suggest a systemic effect of LC, which was applied on several joints (4–6) in these patients. WBC also significantly reduced DAS28 in 83 RA patients from 3 studies [66,67,70], including 20 patients originating from a RCT [70]. Mean DAS28 decreased from 4.27 ± 0.83 (95% CI: [4.02–4.52]) at baseline to 3.79 ± 0.81 (95% CI: [3.56–4.02]) after WBC (p < 0.002).
<H2>Results: secondary outcomes (tolerance and physiological effects)</H2>

As concerns tolerance, no major adverse effect was reported in any of the screened studies. Cryotherapy is overall a well-tolerated treatment [8,9] as compared to other adjunct therapies in RA such as corticosteroids and NSAIDs. The contra-indications are patients with systemic lupus erythematosus, vasculitides, cryoglobulinemia, cold hypersensitivity, allergy or urticarial, cold-induced bronchospasm, Raynaud’s phenomenon, acrocyanosis, sickle-cell anemia, skin circulation disorders, paroxysmal cold hemoglobinuria, heart arrhythmia, symptomatic cardiovascular or lung disease, uncontrolled hypertension, advanced diabetes mellitus and cutaneous hypoesthesia. It should be avoided in patients with scleroderma, spinal cord injury or poor circulation (risk of skin lesions such as frostbite, chilblains or necrosis). Beyond a certain application duration threshold (For instance, 20–30 minutes for cold packs, 2 minutes for CO₂ cryotherapy at −78°C as indicated in manufacturers’ instructions for use), cryotherapy can be painful and pro-inflammatory. Anyway, specific instructions for use should be read carefully before using any cryotherapy device, especially as concerns maximal recommended application duration. During CO₂ cryotherapy, skin temperature must be kept above 2°C, gas blow must be performed at 10–15 cm from skin surface (4–6 cm for cold air) [15], the application area must be swept and ice crystal formation on skin surface must be avoided (frostbite, chilblain and burn prevention). Cold packs must not be in direct contact with the skin. Cryotherapy can also induce nerve lesions (it must be used with caution in the vicinity of superficial nerves) and slowed wound healing.

As for cryotherapy physiological effects in RA, LC may reduce joint temperature to about 30°C in healthy as well as arthritic human knees for 2 h [19,20].
Studies in animal models and other medical fields suggest that mild hypothermia (with local and/or core body temperatures around 30°C) may inhibit white blood cell infiltrate formation [42], pro-inflammatory cytokine gene transcription [23,30], enzymatic pathways such as collagenases [41], metalloproteinases [39,40], pro-angiogenic agents such as VEGF [36].

In RA, cryotherapy might decrease pro-inflammatory cytokine and proteolytic enzyme levels, but studies are rare. LC significantly decreased serum TNF-α and tended to decrease serum IL-6 levels in 40 RA patients [63]. LC and WBC tended to decrease serum IL-6 levels in 59 RA patients [69]. WBC significantly decreased serum histamine levels in 20 RA patients [71].

In experiments using RA synovial collagenase cultured with human collagen fibrils, the authors showed a 4-time decreased collagen lysis at 33°C versus 36°C [41]. In arthritic zymosan-injected rabbits, ice chip application caused a non-significant decrease in cell infiltration and synovial hyperplasia [72].

These results hold strong therapeutic promises in RA. However, studies about cryotherapy’s molecular effects in RA are scarce and heterogeneous, so we could not perform any quantitative data analysis.

Discussion

Pooling 6 studies including 257 RA patients, we show that chronic local or WBC (14–20 applications) significantly decreases pain VAS (mm) and DAS28 (within-group effect-size).

As concerns control groups, 16 patients were treated with “drug therapy” and compared to LC-treated patients [64] and 17 patients exposed to magnetic fields were compared to WBC-treated patients [67]. These control groups were poorly described, and the studies were not randomized, so we could not perform any comparison with pooled mean differences in cryotherapy-treated patients nor calculate any between-group effect-size. We excluded control groups with heat application, which has pro-inflammatory effects [20].

It is of course difficult to create placebo groups for cryotherapy.
All the patients in the selected studies received associated pharmacological treatment. This drug therapy intake (NSAIDs, corticosteroids, DMARDs, and biologics) was not precisely described in four out of six studies. However, RA treatment is quite standardized; and pharmacological treatment protocols (drugs, and doses) remained stable before and throughout the studies, so the variations in pain VAS and DAS28 scores are likely to reflect cryotherapy’s effects as an adjunct therapy.

We pooled patients treated with different cryotherapy techniques, because group sizes were not sufficient for separate analyzes, and because no significant difference for considered endpoints was found between these techniques in studies using parallel treatment arms. Notably, we couldn’t perform any subgroup analysis comparing cold packs (cooling) to gaseous cryostimulation in LC-treated patients due to insufficient sample sizes [63,70]. Cryotherapy protocols were quite heterogeneous (duration, intensity, considered joints, physical agents, temperature, duration, and periodicity) as summarized in Table 2. The overall quality scores of the selected studies were quite low, but they reflect currently available evidence about cryotherapy. Studies were mainly limited by a lack of randomization and valid control groups. It is obviously difficult to find appropriate placebo groups for cryotherapy. Dropouts and withdrawals were also poorly reported. However, as cryotherapy is a very well-tolerated treatment, and as no major side effect was reported in any of the selected studies, the amount of missing data is likely to be very low.

Importantly, despite various cryotherapy modalities and potential confounders, the six selected studies showed very homogeneous results (FIGURE 2).

Unlike Welsh’s Cochrane meta-analysis, we excluded articles dealing with post-operative cryotherapy, as surgery by itself might interfere with joint inflammation (TABLES 1 and 2).
Clinical practice and physiological rationale strongly suggest a potential interest of cryotherapy as an adjunct therapy in rheumatic inflammatory diseases.

Cryotherapy applied locally on an inflamed joint allows to reach a 30°C intra-articular temperature plateau, with a possibly 2–3 hour remanent local hypothermia [19,20]. Studies conducted in other medical fields suggest that it might therefore down-regulate such pro-angiogenic and pro-inflammatory pathways as VEGF, pro-inflammatory cytokines and enzymatic activities involved in synovial microvascular hyperplasia, joint inflammation and destruction (FIGURE 4).

Synovial and systemic endothelial dysfunction in RA induce pain, joint inflammation and destruction and increased cardiovascular morbidity and mortality. Cryotherapy, by up-regulating noradrenalin pathway, could down-regulate IL-6 and i-NOS pathways, which are known to be involved in endothelial dysfunction an inflammation [3]. Further studies are needed to establish these molecular effects of cryotherapy specifically in RA. Studies in animal models such as collagen-induced arthritis or adjuvant-induced arthritis will certainly lead to a better description of cryotherapy effects on these promising molecular targets in the field of rheumatology, as already the case in neurology for instance, with well-known therapeutic effects of mild hypothermia after brain ischemia [23,24].

We could show a significant decrease in pain VAS (mm) and DAS28 in RA patients after chronic LC as well as WBC (within-group effect-size). This result was remarkably constant among the six selected studies (FIGURE 2). However, we could not calculate any between-group effect-size because available control groups were small and methodologically unsatisfying. Randomized trials with valid control groups and stronger methodology are required in order to measure this effect size more accurately.
In light of the results of this systematic review and considering a solid biological rationale, cryotherapy deserves to be evaluated as a full therapeutic option in patients without any corticosteroid, NSAID, DMARD, biologic or physical therapy. Short-term cryotherapy effects should also be addressed. LC applied once to an inflamed joint has been shown to decrease synovial power-Doppler hypersignal in RA, which is a good reflect of synovial neoangiogenesis and inflammation [60,61]. Our team is currently studying the effects of two local cryotherapy applications on synovial power Doppler hypersignal as well as synovial fluid cytokine and VEGF levels in arthritic patients.

In order to conduct these important studies, a better standardization of cryotherapy techniques will be required (TABLE 3). Optimal cryotherapy protocols need to be precisely defined (physical agent, temperature and duration periodicity). It is notably important to determine, for each cryotherapy technique, the therapeutic range and the cold intensity threshold beyond which it may become pro-inflammatory [10,20,59,69]. Gaseous LC might induce a more pronounced and acute decrease in tissue temperature (thermal shock), and cold packs a deeper and more prolonged cooling. WBC is still expensive, but new techniques using filtered and cooled ambient air without any consumable will probably be cheaper and require less room space, allowing a more widespread use.

These studies will help to define cryotherapy’s role in treatment strategies in RA and other joint inflammatory diseases, most probably as an adjunct therapy to DMARDs and targeted biologic treatments, along with corticosteroids and NSAIDs. Corticosteroid and NSAID toxicity represents a major public health concern, with numerous, well-known, side-effects and complications. Cryotherapy used as an adjuvant therapy and applied using standardized and optimized protocols could help to spare corticosteroid and NSAID doses in these patients, and subsequently decrease cardiovascular, infectious, gastrointestinal morbidity and mortality. This treatment option may be of special interest in an increasing number of patients with
NSAID and/or corticosteroid contra-indications (cardiovascular diseases, diabetes, kidney deficiency, etc.). This dose-sparing effect should also be addressed and measured specifically in randomized controlled trials.

Local cryotherapy is a cheap and very well-tolerated therapeutic option, which can be easily performed at patient’s home. In the future, it could contribute to reduce the economic burden and iatrogenicity related to the treatment of arthritic patients, especially for the elderly.

Key issues

- Molecular pathways targeted by cryotherapy (pro-inflammatory cytokines, VEGF, cartilage-degrading enzymes) suggest interesting anti-inflammatory properties in rheumatic inflammatory diseases, which should be further investigated.
- Cryotherapy could be an interesting adjunct therapy in these diseases with a better safety profile as compared to corticosteroids and NSAIDs.
- By pooling six studies, we show that chronic local cryotherapyLC and WBC significantly reduce pain visual analogic scaleVAS and 28-joint- disease activity score DAS28 in rheumatoid arthritisRA (within-group effect-size). However, methodological issues and a lack of control groups prevent from calculating any between-group effect size.

Financial and competing interests disclosure

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties. No writing assistance was utilized in the production of this manuscript.
References

Papers of special note have been highlighted as:

• of interest

** of considerable interest

15 Korman P, Straburzynska-Lupa A, Romanowski W, Trafarski A. Temperature changes in rheumatoid hand treated with nitrogen vapors and cold air. Rheumatol. Int. 32(10), 2987–

* The only study monitoring intra-joint temperature in arthritic patients treated with local cryotherapy. Local cryotherapy induces an intra-joint temperature plateau (about 30°C for 2 hours).

• An experimental study in ophtalmology suggesting that cryotherapy might down-regulate VEGF production.

* An experimental study suggesting that cryotherapy might down-regulate collagenase activity in RA.

* A randomized controlled trial with crossover design showing wrist power-Doppler hypersignal decrease after a single cold pack application.

* A randomized controlled trial in gout showing greater pain VAS decrease in patients treated by corticosteroids + colchicine + ice packs versus corticosteroids + colchicine.

** A controlled trial comparing two cryotherapy modalities (cold air versus liquid nitrogen, 20 applications over 10 days, two groups of 20 patients) and showing significant decreases in pain VAS, DAS28 and serum TNF-α.

A randomized controlled trial showing a decrease in serum IL-6 levels in RA patients without corticosteroids after chronic cryotherapy (LC applied to five joints simultaneously or WBC (−60°C) both performed two or three times a day for 7 days). Conversely, −110°C WBC following the same application protocol increased serum IL-6 levels. This suggests potential systemic anti-inflammatory effects of cryotherapy and a possible pro-inflammatory effect of cryotherapy beyond a cold stimulation intensity threshold.

A randomized controlled trial showing significant decreases in pain VAS and DAS28 in RA patients treated with LC as well as WBC (performed two- or three-times a day for 7 days)

76 Shepherd JT, Rusch NJ, Vanzoutte PM. Effect of cold on the blood vessel wall. Gen

Websites

101 International Standard Randomised Controlled Trial Number Register. website (http://www.controlled-trials.com/isrctn)

102 ClinicalTrials.gov. website (http://www.clinicaltrials.gov)

103 WHO. International Clinical Trials Registry Platform. website (http://www.who.int/ictrp/search/en)

Figure and table legends

TABLE 1. Cochrane meta-analysis [18]: review of the five Randomized controlled trial RCTs about cryotherapy.

<table>
<thead>
<tr>
<th>Pathology criteria</th>
<th>Joint</th>
<th>Endpoints</th>
<th>Postoperative cryotherapy (yes/no)</th>
<th>JADAD score (/5)</th>
<th>Cryotherapy modality</th>
<th>Control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 RA (ARA criteria)</td>
<td>Knees</td>
<td>-Joint circumference -Infrared</td>
<td>No</td>
<td>2/5</td>
<td>Crushed ice in damp towels</td>
<td>Controlateral joint</td>
</tr>
<tr>
<td>Patients hospitalized for surgical procedures to the hand</td>
<td>30 hands</td>
<td>-Edema evolution over preoperative volume</td>
<td>Yes</td>
<td>2/5 (R1B0W1)</td>
<td>Cold water immersion (10°C for 4 min; twice a day for 1 day)</td>
<td>Hot packs (n = 15)</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---</td>
<td>-----</td>
<td>-------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>18 Recent RA (<5 years)</td>
<td>Shoulders</td>
<td>-Pain (McGill questionnaire) -Range of movement</td>
<td>No</td>
<td>1/5 (R1B0W0)</td>
<td>Ice (20 min) + exercises program</td>
<td>Hot packs (n = 9)</td>
</tr>
</tbody>
</table>

(Data taken from the articles cited in this table)

This meta-analysis performed in 2001 and updated in 2011 mixed studies with cold or heat application. It showed no significant effect on pain (primary endpoint), joint swelling, medication intake, range of motion, grip strength or hand function. No harmful side effect was reported [18].

The **five** RCTs about cryotherapy had limitations: the studies showed a great heterogeneity as concerns cryotherapy methods, treated joints, outcomes, associated medications and physical exercise. The control groups were: hot packs in **three** studies and contralateral joint in one study. Heat application does not seem to be an appropriate control nor treatment group because it could increase joint inflammation and collagenase activity [20]. Cold exposure was probably insufficient in intensity and duration in some of the studies as compared to with more recent studies.
<table>
<thead>
<tr>
<th>Pathology / joints (n)</th>
<th>LC–/–WBC (n)</th>
<th>Cryotherapy modalities</th>
<th>Control group (n)</th>
<th>Relevant endpoints (for meta-analysis) and evaluation times</th>
<th>JADAD 5/NOS JADAD1 1</th>
<th>Bias-/confounders</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA (60 patients)</td>
<td>-LC (n = 20) OR -WBC (~60°C; n = 20) -WBC (~110°C; n = 20)</td>
<td>-Cold packs or cold air on 5 joints (~30°C; 10–30 or 1–5 min) OR -WBC (~60°C OR ~110°C; duration?) ➔ three-times a day: 7 days (20 applications)</td>
<td>None</td>
<td>-Pain VAS -DAS28 -ESR ➔ CRP ➔ Before: Day 7 ‘after the last cryotherapy’ N = 20; 17; 17</td>
<td>R1B0W1 8/11</td>
<td>-Associated kinesitherapy -Corticosteroids (10/20; 14/20; 9/20); median dose 5 mg/day [2.5–15] -NSAIDs: 16/20; 17/20; 18/20 -DMARDs: 10/20; 9/20; 9/20 -“cytostatics”: 11/20; 14/20; 12/20 -No change in pharmalogical treatment -BMI: 25.7 ±/− 4</td>
<td>[70]</td>
</tr>
</tbody>
</table>

TABLE 2: Therapeutic effects of cryotherapy: articles included in the meta-analysis (n = 6).
<table>
<thead>
<tr>
<th>RA (ACR ; n=40 patients)</th>
<th>-LC (2 modalities)</th>
<th>-Cold air (−30°C; 3 min; n = 20) OR -Liquid nitrogen vapors (−160°C; 3 min; n = 20) Twice a day (knees in the morning, 4 h break, then hands) for 10 days</th>
<th>None</th>
<th>-Pain VAS -DAS28 ➔ Before and after 10 days of treatment</th>
<th>S3C1O2 6/11</th>
<th>vs 24.6 ±/− 3.6 vs 28.3 ±/− 5.9</th>
<th>-Biologics, physical exercise, skin/room T°C: NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early RA (n = 36 patients)</td>
<td>-LC (n = 20 patients)</td>
<td>-Cold air (−60°C; 15 min; 10 sessions—hands, knees or ankles) Included in a Complex Rehabilitation Program (40 min exercise, 40 min occupational therapy + “Drug therapy”), Total duration?</td>
<td>None</td>
<td>-Drug therapy” only (n = 16)</td>
<td>S3C1O1 3/11</td>
<td>-Associated kinesitherapy and physical exercise - Corticosteroids 28/40 - DMARDs 40/40 - Biologics: none; -No change in pharmalogical treatment. - BMI: 28.4 ±/− 4.5 and 28.2 ±/− 2.3 - NSAIDs, skin/room T°C</td>
<td></td>
</tr>
<tr>
<td>RA (n = 48 patients), AS (n = 12)</td>
<td>-WBC</td>
<td>-WBC (−110°C for 3 min; twice a day) ➔ Average number of sessions: 15.8 ±/− 8.37</td>
<td>None</td>
<td>-Pain VAS -DAS 28 (48 patients) -BASDAI (12 patients) ➔ Before and after treatment</td>
<td>S2C0O1 4/11</td>
<td>-Associated kinesitherapy and physical exercise. -No change in pharmalogical treatment. -Corticosteroids, NSAIDs, kinesitherapy, skin/room T°C, BMI: NA</td>
<td></td>
</tr>
<tr>
<td>RA (ACR; n = 32 patients)</td>
<td>-WBC (n = 15 patients)</td>
<td>-WBC (n = 15 patients)</td>
<td>-Low frequency magnetic field (20–40 Hz; 5–7 mT; 20 min; n = 17 patients) + kinesitherapy</td>
<td>-Pain VAS -DAS28 Before and after treatment (8 days)</td>
<td>-Associated kinesitherapy</td>
<td>[67]</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>---</td>
<td>---</td>
<td>---------------------------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>RA (ACR; n = 41 patients)</td>
<td>-WBC</td>
<td>WBC (-160°C; 3–5 min; twice a day (6 h interval) for 15 days) + active exercises (45 min)</td>
<td>None</td>
<td>-Pain VAS - Before and after treatment (15 days)</td>
<td>-Associated kinesitherapy and physical exercise</td>
<td>-Corticosteroids, NSAIDs, physical exercise, skin temperature, BMI: NA</td>
<td>[68]</td>
</tr>
</tbody>
</table>

(Data taken from the cited articles).

RA: Rheumatoid Arthritis

RCTs: R: Randomization, B: Blinding, W: Withdrawals (JADAD score)

Other study designs: S: Sampling, C: Control groups, O: Outcome measurement (NOS score)

Pain VAS: pain Visual Analogic Scale

DAS28: 28 joint-disease activity score (composite score including patient VAS for disease activity, acute-phase reactant (ESR or CRP), tender joint count and swollen joint score)

ACR: American College of Rheumatology (Diagnostic criteria for rheumatoid arthritis)

BASDAI: Bath Ankylosing spondylitis Disease Activity Index

BMI: Body Mass Index (kg/m²)

DMARD: disease activity modifying drug; LC: Local Cryotherapy; n: number of patients; NA: Not assessed;
NSAID: Non-steroidal anti-inflammatory drug; T°C: Temperature (Celsius degrees)

LC: Local Cryotherapy;

WBC: Whole-body Cryotherapy

Data taken from the cited articles.

NA: Not assessed

T°C: Temperature (Celsius degrees)

BASDAI: Bath Ankylosing Spondylitis Disease Activity Index

n: number of patients

TABLE 3. Cryotherapy techniques, Local cryotherapy techniques
(Data were taken from the cited articles)

Table 3A: Local Cryotherapy (LC) techniques

<table>
<thead>
<tr>
<th>Physical form</th>
<th>Temperature</th>
<th>Pressure</th>
<th>Duration</th>
<th>Skin temperature</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ice bags</td>
<td>Ice cubes, mixture of water and crushed Fee</td>
<td>0°C</td>
<td>Straps for compression</td>
<td>10–30 min</td>
<td>30 min</td>
</tr>
<tr>
<td>Cold packs for refrigerated gels</td>
<td>Joint-shaped, flexibility (CryoCuff®, Polar Care®, Gel-filled cold packs, Tinta® 12X29 cm)</td>
<td>-15°C</td>
<td>2</td>
<td>15–30 min, alternated times a day for 7 days</td>
<td>20 min</td>
</tr>
<tr>
<td>Gas (thermal shock)</td>
<td>Cold air filtered ambient air to consumables: Cryo 5.40001/min</td>
<td>-30°C</td>
<td>3</td>
<td>8 min 10–30 min, 3/day, 7 days 3 min</td>
<td>3 min</td>
</tr>
<tr>
<td>Liquid Nitrogen vapors (Medivent)</td>
<td>-160°C</td>
<td>3</td>
<td>8.8 mm 3 min</td>
<td>8.8°C (minimal value) 17.9°C after 1 min</td>
<td>[15,20]</td>
</tr>
</tbody>
</table>
Table 4: Ice-water and whole-body cryotherapy (WBC) techniques.

<table>
<thead>
<tr>
<th>Physical Technique</th>
<th>Temperature Form</th>
<th>Pressure</th>
<th>Duration</th>
<th>Skin Temperature</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ice-water immersion</td>
<td>0-20°C</td>
<td>*</td>
<td>0-2°C for 20 s (three-times a week for 12 weeks)</td>
<td></td>
<td>[22,45]</td>
</tr>
<tr>
<td>Whole-body cryotherapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryogenic chambers</td>
<td>140°C ≤1 or 2°C</td>
<td>0</td>
<td>2-3 min (three-times/week; 12 weeks) 2 min three-times/day; 7 days 3 min/day-10 days</td>
<td>12-16°C (110°C)</td>
<td>[45,68,79,82]</td>
</tr>
<tr>
<td></td>
<td>(Crystream</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>acclimation®)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>chambers)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cold air cooled</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>by liquid nitrogen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Zimmer® KR2005SN®)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data were taken from the cited articles.

FIGURE 1. Flowchart.

LC: Local Cryotherapy

WBC: Whole-body Cryotherapy

VAS: Visual Analogic Scale

DAS28: 28 joint-Disease Activity Score (composite score including patient VAS for disease activity, acute-phase reactant (ESR or CRP), tender joint count and swollen joint score)

RCT: Randomized-controlled Trial

SD: Standard Deviation

n: number of articles
DAS28: 28-joint Disease Activity Score (composite score including patient VAS for disease activity, acute-phase reactant (ESR or CRP), tender joint count and swollen joint score);

LC: Local Cryotherapy;

n: Number of articles; RCT: Randomized-controlled Trial;

SD: Standard Deviation;

VAS: Visual Analogic Scale;

WBC: whole-body cryotherapy.

\[\text{FIGURE 2}^{[R6]} \text{. Effects of local cryotherapy on pain VAS (2A) and DAS28 (2B). (Data taken from the cited articles).}\]

\[\text{FIGURE 3} \text{. Effects of whole-body cryotherapy on pain VAS (3A) and DAS28 (3B).}\]

Mean differences in pain VAS (mm) or DAS28 before/after LC or WBC are represented for each of the six studies included in the meta-analysis [63,64,66–68,70], with 95% confidence intervals. Heterogeneity was also tested using Fisher’s test (F0 and p-values are shown on the graphs).

Design of the studies: RCT [70], controlled trials [63,64], parallel cryotherapy treatment groups [67,68¹] and non-controlled study [66].

CI: Confidence Interval

DAS28: 28-joint Disease Activity Score (composite score including patient VAS for disease activity, acute-phase reactant (ESR or CRP), tender joint count and swollen joint score);
In RA, local and systemic inflammation promote neoangiogenesis which in turn favors inflammatory cell infiltrate and pro-inflammatory cytokine release.

(A) After cold stimulation, the autonomic nervous system is activated [73] and efferent sympathetic neurons release acetylcholine which binds a7nAchR receptor and noradrenaline that binds β2-adrenoceptor. These ligand–receptor interactions may then inhibit the NFkB pathway and subsequently down-regulate pro-inflammatory cytokine, oxidative stress agent and adhesion molecule gene transcription [23,35,38,73,74–75].

(B) Noradrenaline also induces vasoconstriction through α-adrenoceptor binding on the vascular wall [76], which could contribute to limit inflammation. Cryotherapy might also down-regulate the expression of pro-angiogenic factors such as VEGF [36].

(C) Cryotherapy might also down-regulate important enzymatic pathways involved in joint inflammation and destruction [39,59,77,78].

Citations refer to studies conducted in humans [23,35,39,41,69,71,73,76–78,80], human cell cultures, rats [24,38,40,42,82], mice [23,32], dogs [76] and two review articles [74,75].
MMP: Metalloproteinase
NFkB: Nuclear Factor kappa B
PGE2: Prostaglandin E2
TNF-α: Tumor Necrosis Factor α

VAS: Visual Analogic Scale; WBC: Whole-body Cryotherapy; VEGF: Vascular Endothelial Growth Factor

Data taken from the articles cited below and in the figure.

Abreviation list
BASDAI: Bath Ankylosing spondylitis Disease Activity Index; BMI: Body Mass Index (kg/m²); CI: Confidence Interval; CNS: Central Nervous System; CRP: C-reactive Protein; DAS28: 28 joint Disease Activity Score (composite score including patient VAS for disease activity, acute-phase reactant (ESR or CRP), tender joint count and swollen joint score); DMARD: Disease Activity Modifying Drug; ESR: Erythrocyte Sedimentation Rate (mm); ICAM-1: Intercellular Adhesion Molecule-1; IL-6, IL-1β: Interleukin-6, IL-1β; i-NOS: Inducible NO-Synthase; LC: Local Cryotherapy; MMP: Metalloproteinase; NFkB: Nuclear Factor kappa B; NSAID: Non-Steroidal Anti Inflammatory Drug; OA: Osteoarthritis; PGE2: Prostaglandin E2; PnN: Neutrophil Polymorphonuclear; RA: Rheumatoid Arthritis; RCT: Randomized-controlled Trial; SD: Standard Deviation; TNF-α: Tumor Necrosis Factor α; VAS: Visual Analogic Scale; VEGF: Vascular Endothelial Growth Factor; WBC: Whole-body Cryotherapy; RA: Rheumatoid Arthritis; LC: Local Cryotherapy; WBC: Whole-body Cryotherapy
VAS: Visual Analogic Scale

DAS28: 28-joint Disease Activity Score (composite score including patient VAS for disease activity, acute-phase reactant (ESR or CRP), tender joint count and swollen joint score)

ESR: Erythrocyte Sedimentation Rate (mm)

CRP: C-reactive Protein

TNF-α: Tumor Necrosis Factor-α

IL-6, IL-1β: Interleukin-6, IL-1β

PnN: Neutrophil Polymorphonuclear

VEGF: Vascular Endothelial Growth Factor

i-NOS: Inducible NO-Synthase

NFκB: Nuclear Factor kappa B

DMARD: Disease Activity Modifying Drug

NSAID: Non-Steroidal Anti Inflammatory Drug

MMP: Metalloproteinase

PGE2: Prostaglandin E2

ICAM-1: Intercellular Adhesion Molecule-1

CNS: Central Nervous System

RCT: Randomized-controlled Trial

OA: Osteoarthritis

BMI: Body Mass Index (kg/m²)

BASDAI: Bath Ankylosing spondylitis Disease Activity Index

SD: Standard Deviation

CI: Confidence Interval